
Tinyman AMM Contracts V1.1 - Internal
Review
Pool LogicSig Template:
https://github.com/tinymanorg/tinyman-contracts-v1/blob/13acadd1a619d0fcafadd6f6c489a906b
f347484/contracts/pool_logicsig.teal.tmpl

ValidatorApp:
https://github.com/tinymanorg/tinyman-contracts-v1/blob/13acadd1a619d0fcafadd6f6c489a906b
f347484/contracts/validator_approval.teal

Transaction Specifications: https://docs.tinyman.org/integration/transactions

Actors
Pool

● A contract account controlled exclusively by a LogicSig contract generated from the Pool
LogicSig Template.

● Signs all NoOp App Calls to the ValidatorApp
Pooler

● A user account that provides liquidity (2 Assets) to a Pool
● Sends asset to the Pool with a Mint operation in return for receiving Pool Tokens

representing the share of the Pool’s liquidity
● Sends Pool Tokens to the Pool with a Burn operation in return for receiving the correct

share of the liquidity in each asset
● Claims back excess amounts of assets (due to slippage tolerance) with a Redeem

operation
● The account whose local state is updated by the validator app (Accounts[1])

Swapper
● A user account that exchanges an amount of one asset for another with a Pool
● Claims back excess amounts of assets (due to slippage tolerance) with a Redeem

operation
● The account whose local state is updated by the validator app (Accounts[1])

Creator
● An account that deploys the Validator App to the Algorand network

NotPool
● Any account except a Pool (may be Pooler or Swapper or other)
● Sends the Payment transaction to cover fees/min balance for Pool signed transactions.

https://github.com/tinymanorg/tinyman-contracts-v1/blob/13acadd1a619d0fcafadd6f6c489a906bf347484/contracts/pool_logicsig.teal.tmpl
https://github.com/tinymanorg/tinyman-contracts-v1/blob/13acadd1a619d0fcafadd6f6c489a906bf347484/contracts/pool_logicsig.teal.tmpl
https://github.com/tinymanorg/tinyman-contracts-v1/blob/13acadd1a619d0fcafadd6f6c489a906bf347484/contracts/validator_approval.teal
https://github.com/tinymanorg/tinyman-contracts-v1/blob/13acadd1a619d0fcafadd6f6c489a906bf347484/contracts/validator_approval.teal
https://docs.tinyman.org/integration/transactions


Attack Vectors
The following is a non exhaustive list of attack vectors considered during this review.

● Send assets from pool account
○ Close account
○ Close asset
○ Include extra txns in group signed by pool logicsig
○ Change txn in valid group to do something else
○ Sign unexpected txns with pool logicsig

● Manipulate local state of a pool account
○ Increase excess amounts incorrectly
○ Redeem without decreasing excess amounts
○ Increase excess amounts
○ Clear local state of pool
○ Fill local state of an account not involved in the transactions

● Take ownership of pool account
○ Rekey account

● Modify validator app
○ Update
○ Delete

● Mix pool accounts in one group
○ Read state from one pool while withdrawing from another
○ Update excess amounts of a different pool

● Exploit incorrect calculations
● Make pool pay unnecessary fees
● Creating Pool Tokens with incorrect information
● Creating Pool Tokens with permissioned functionality enabled (manager, freeze,

clawback)

Out of Scope
This is a non exhaustive list of actions that may have detrimental effects for users of the system
but are outside the scope of this review.

● Market manipulation
● Front Running
● Freeze or Clawback of pooled assets



Transaction Group Checks
This is a non exhaustive list of checks that have been considered for this review. This includes
general checks that apply to all interactions with the contracts and specific checks for each
documented operation. The relevant line numbers for the checks in both the LogicSig and
Validator App are listed.

General Checks

Check LogicSig ValidatorApp

Asset 1 ID > Asset 2 ID 10:13

Pool RekeyTo is not allowed 25:28

Pool CloseTo is not allowed 15:18

Pool AssetCloseTo is not allowed 20:23

Pool LogicSig txns must be grouped
with Validator App Call signed by the
same LogicSig

30:49

Pool LogicSig only allows groups with
Validator App Calls with arg[0]:

“bootstrap” 59:63

“swap” 76:80

“mint” 90:93

“burn” 97:100

“redeem” 103:106

"fees" 109:112

Else error 114

Deny Validator App Update 52:63

Deny Validator App Delete 52:63

Deny Validator App CloseOut 52:63



Allow OptIn to Validator App without
further side effects

66:73

Allow Validator App creation without
further side effects

76:79

Err for any unexpected App Calls 265



Bootstrap

Check LogicSig ValidatorApp

Group Size is 4 (or 5 if asset 2 != Algo) 125:133

Txn 0

Type is Payment 686:689 (implicit)

Receiver is Pool 686:689

Sender is not Pool 641:644

Amount >= fee for Txns 1,2,3 (if
ASA-Algo)

691:694, 264:270

Amount >= fee for Txns 1,2,3,4 (if
ASA-ASA)

691:694, 302:310

Txn 1

Type is AppCall 41:44

OnCompletion is Optin 52:54

Sender is Pool 36:39

App ID is correct 46:49

Args[1] is asset1 135:138

Args[2] is asset2 139:142

Txn 2

Type is AssetConfig 153:156

Sender is Pool 147:150

Asset ID is 0 (new asset) 159:162

ManagerAddress is ZeroAddress 204:207

ReserveAddress is ZeroAddress 210:213



FreezeAddress is ZeroAddress 216:219

ClawbackAddress is ZeroAddress 222:225

URL is “https://tinyman.org” 198:201

Unit Name is “TMPOOL11” 184:187

Asset Name is “TinymanPool1.1
{asset-1-unit-name}-{asset-2-unit-name
}”

191:195 1134:1158

Decimals is 6 172:175

Total is 0xFFFFFFFFFFFFFFFF 165:169

Txn 3

Type is AssetTransfer 235:238

Sender is Pool 229:232

Receiver is Pool 247:250

AssetAmount is 0 253:256

Asset ID is asset 1 241:244

Txn 4 (if asset 2 is not Algo)

Type is AssetTransfer 279:282

Sender is Pool 275:278

Receiver is Pool 291:294

AssetAmount is 0 297:300

Asset ID is asset 2 285:288



Mint

Check LogicSig ValidatorApp

Group Size is 5 350:353

Txn 0

Type is Payment 686:689 (implicit)

Receiver is Pool 686:689

Sender is NotPool 641:644

Amount >= fee for Txns 1,4 691:694, 421:425

Txn 1

Type is AppCall 41:44

OnCompletion is Noop 67:70

Sender is Pool 36:39

App ID is correct 46:49

Accounts[1] is Pooler 361:364 642:645

Txn 2

Type is AssetTransfer 372:375 (implicit)

Sender is not Pool 367:370

Sender is Pooler 377:380, 416:419

AssetReceiver is Pool 372:375

Asset ID is asset 1 383:386

AssetAmount ?



Txn 3

Type is AssetTransfer or Pay 389:397 (implicit)

Sender is not Pool 377:380, 367:370

Sender is Pooler 377:380, 416:419

AssetReceiver or Receiver is Pool 389:397

Asset ID is asset 2 if AssetTransfer 399:408

Amount or AssetAmount ?

Txn 4

Type is AssetTransfer 416:419 (implicit)

Sender is Pool 411:414

AssetReceiver is Pooler 416:419

Asset ID is liquidity_asset 508:511, 734:751

AssetAmount <=
calculated_liquidity_token_out

664:705, 754:800



Burn

Check LogicSig ValidatorApp

Group Size is 5 470:473

Txn 0

Type is Payment 686:689 (implicit)

Receiver is Pool 686:689

Sender is NotPool 641:644

Amount >= fee for Txns 1,2,3 691:694, 552:558

Txn 1

Type is AppCall 41:44

OnCompletion is Noop 67:70

Sender is Pool 36:39

App ID is correct 46:49

Accounts[1] is Pooler 481:484 545:548

Txn 2

Type is AssetTransfer 502:505 (implicit)

Sender is Pool 497:500

AssetReceiver is Pooler 502:505

Asset ID is asset 1 508:511

AssetAmount is <
calculated_asset1_out

563:567

Txn 3



Type is AssetTransfer or Pay 520:528 (implicit)

Sender is Pool 515:518

Receiver or AssetReceiver is Pooler 520:528

Asset ID is asset 2 if AssetTransfer 531:539

Amount or AssetAmount is <
calculated_asset2_out

585:588

Txn 4

Type is AssetTransfer 547:550 (implicit)

Sender is not Pool 542:545

Sender is Pooler 502:505, 520:528

AssetReceiver is Pool 547:550

Asset ID is liquidity_asset 508:511

AssetAmount is correct 550:588



Redeem

Check LogicSig ValidatorApp

Group Size is 3 630:633

Txn 0

Type is Payment 686:689 (implicit)

Receiver is Pool 686:689

Sender is NotPool 680:683

Amount >= fee for Txns 1,2 652:656

Txn 1

Type is AppCall 41:44

OnCompletion is Noop 67:70

Sender is Pool 36:39

App ID is correct 46:49

Accounts[1] is Pooler/Swapper 642:650 316:324

Txn 2

Type is Pay or AssetTransfer 642:650 (implicit)

Sender is Pool -

Receiver or AssetReceiver is
Pooler/Swapper

642:650

Amount or AssetAmount <=
excess_asset_i_amount

353:355, 93:96

Asset ID is correct 344:355



Amount is correct for Pool+Asset pair 344:355

* “Sender is Pool” is not checked but the sender could not be any other pool because LogicSig
30:49 ensures it will only allow txns with an app call to the validator signed with the same
LogicSig.



Swap

Check LogicSig ValidatorApp

Group Size is 4 567:570

Txn 0

Type is Payment 686:689 (implicit)

Receiver is Pool 686:689

Sender is NotPool 641:644

Amount >= fee for Txns 1,4 691:694, 618:622

Txn 1

Type is AppCall 41:44

OnCompletion is Noop 67:70

Sender is Pool 36:39

App ID is correct 46:49

Accounts[1] is Swapper 579:582 859:862

Txn 2

Type is AssetTransfer or Pay 597:605 (implicit)

Sender is not Pool 585:588

Sender is Swapper 579:582, 608:616

Receiver or AssetReceiver is Pool 597:605

Asset ID is asset 1 or asset 2 865:867, 877:879

Asset ID != Txn 3 Asset ID 865:884

Amount or AssetAmount >=
calculated_amount_in if arg[1] == “fo”

957:960, 93:96



Txn 3

Type is AssetTransfer or Pay 608:616 (implicit)

Sender is Pool 591:594

AssetReceiver or Receiver is Swapper 608:616

Asset ID is asset 1 or asset 2 868:870, 880:882

Asset ID != Txn 2 Asset ID 865:884

Amount or AssetAmount <=
calculated_amount_out

1041:1044, 471:474



Redeem Fees

Check LogicSig ValidatorApp

Group Size is 3 664:667

Txn 0

Type is Payment 686:689 (implicit)

Receiver is Pool 686:689

Sender is NotPool 680:683

Amount >= fee for Txns 1,2 669:673

Txn 1

Type is AppCall 41:44

OnCompletion is Noop 67:70

Sender is Pool 36:39

App ID is correct 46:49

Txn 2

Type is AssetTransfer 280:283 (implicit)

AssetReceiver is Creator 280:283

Sender is Pool *

Asset ID is liquidity_asset 270:275

AssetAmount <=
unclaimed_protocol_fee_token_amount

292:295

* “Sender is Pool” is not checked but the sender could not be any other pool because a) no
other pool has the requested liquidity asset and b) LogicSig 30:49 ensures it will only allow txns
with an app call to the validator signed with the same LogicSig.



Calculations
This section describes the main calculations that are used in the operations. The variable
names here correspond to the names used in the comments of the Validator App source. The
line numbers refer to lines of the same source.

Common
asset1_supply = asset1_balance - outstanding_asset1_amount [196:199, 157:160, 104:108]
asset2_supply = asset2_balance - outstanding_asset2_amount [203:206, 170:173, 110:138]
liquidity_token = Pool Token (ASA created by Pool representing share of liquidity)
issued_liquidity_tokens = (TOTAL_LIQUIDITY - liquidity_token_balance) +
outstanding_liquidity_token_amount [482:499, 184:187]

Mint
liquidity_token_amount = gtxn 4 AssetAmount (Pool -> Pooler)
MINIMUM_LIQUIDITY = 1000
asset1_amount = gtxn 2 AssetAmount (Pooler -> Pool) [93:96]
asset2_amount = gtxn 3 AssetAmount (or Amount) (Pooler -> Pool) [471:473]

First Mint
minted_liquidity_token = liquidity_token_amount + MINIMUM_LIQUIDITY [754:756]
assert(minted_liquidity_token == floor(sqrt(asset1_amount * asset2_amount)))
-> assert(minted_liquidity_token^2 <= asset1_amount^2) [754:774]
and
-> assert((minted_liquidity_token + 1)^2 > asset1_amount * asset2_amount) [778:800]

Subsequent Mint
A = asset1_amount * issued_liquidity_tokens / asset1_supply [664:674]
B = asset2_amount * issued_liquidity_tokens / asset2_supply [678:688]
calculated_liquidity_token_out = Min(A, B) [693:697]
assert(liquidity_token_amount <= calculated_liquidity_token_out)
-> calculated_liquidity_token_out - liquidity_token_amount (without error) [699:705]
excess_liquidity_token = calculated_liquidity_token_out - liquidity_token_amount [699:706]

Burn
burn_amount = gtxn 4 AssetAmount
asset1_amount = gtxn 2 AssetAmount (Pooler -> Pool) [93:96]
asset2_amount = gtxn 3 AssetAmount (Pooler -> Pool) [471:473]

calculated_asset1_out = asset1_supply * (burn_amount / issued_liquidity_tokens) [550:561]
excess_asset_1 = calculated_asset1_out - asset1_amount [563:568]
assert(asset1_amount <= calculated_asset1_out)



-> calculated_asset1_out - asset1_amount (without error) [563:567]

calculated_asset2_out = asset2_supply * (burn_amount / issued_liquidity_tokens) [571:585]
excess_asset_2 = calculated_asset2_out - asset2_amount [584:589]
assert(asset2_amount <= calculated_asset2_out)
-> calculated_asset2_out - asset2_amount (without error) [584:588]

Swap
asset_in = gtxn 2 AssetAmount (Swapper -> Pool)
asset_out = gtxn 3 AssetAmount (Pool -> Swapper)

k = input_supply * output_supply

Fixed Input:
asset_in_amount_minus_fee = asset_in_amount * 997/1000
calculated_amount_out = output_supply - (k / (input_supply + asset_in_amount_minus_fee))
This can be rewritten to reduce precision loss with integer division:
calculated_amount_out = (asset_in_amount * 997 * output_supply) / ((input_supply * 1000) +
(asset_in_amount * 997)) [1002:1027]
assert(asset_out_amount <= calculated_amount_out) [1041:1044]
excess_asset_out = calculated_amount_out - asset_out_amount [1041:1044]

Fixed Output:
calculated_amount_in = (k / (output_supply - asset_out_amount)) - input_supply
calculated_amount_in_with_fee = calculated_amount_in * 1000/997
This can be rewritten to reduce precision loss with integer division:
calculated_amount_in = ((asset_out_amount * 1000 * input_suppply) / ((output_supply -
asset_out_amount) * 997)) + 1 [919:942]
assert(asset_in_amount >= calculated_amount_in) [957:960]
excess_asset_in = asset_in_amount - calculated_amount_in [957:960]

Redeem
redeeming_amount = gtxn 2 AssetAmount (Pool -> User) [93:96]
key = pool_address + 'e' + assetID [345:350]
excess_asset_i_amount = app_local_get(account=User, key=key) [344:352]
assert(redeeming_amount <= excess_asset_i_amount)
-> excess_asset_i_amount - redeeming_amount (without error) [352:355]
new_excess_asset_i_amount = excess_asset_i_amount - redeeming_amount [352:355]
If new_excess_asset_i_amount > 0: [356:357]

app_local_put(account=User, key=key, value=new_excess_asset_i_amount) [358]
Else:

app_local_del(account=User, key=key) [363]


